Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556920

ABSTRACT

The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide-dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide-dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future.

2.
Carbohydr Polym ; 335: 122072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616094

ABSTRACT

The sol performance of wheat starch (WS) matrix incorporating acetylated starch (AS) is crucial for the processing and quality features of wheat products. From a supramolecular structure view, how regulating salt (sodium chloride) concentration modulates the sol features, e.g., pasting, zero-shear viscosity (ZSV) and thixotropy of WS-AS binary matrix was explored. Compared to the salt-free counterpart, the saline matrices exhibited a delayed pasting profile and a decreased viscoelasticity. Thereinto, the sol at 0.02 M NaCl exhibited the smallest ZSV (23,710 Pa·s) and the greatest in-shear recovery ratio (33.7 %). Such variations could be attributed to the weakened coil-helix, nematic-smectic and isotropy-anisotropy transitions from a side-chain liquid-crystalline perspective. Meanwhile, the correlation length (ξ) and radius of gyration (Rg) obtained from small angle X-ray scattering analysis were increased by 5.2 and 9.6 Å respectively, which disclosed a restrained entanglement and an enhanced chain mobility. These results would provide a reference for the design of fluid/semisolid products with optimized qualities.

3.
Opt Express ; 32(7): 11296-11306, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570980

ABSTRACT

Tabletop three-dimensional light field display is a kind of compelling display technology that can simultaneously provide stereoscopic vision for multiple viewers surrounding the lateral side of the device. However, if the flat panel light field display device is simply placed horizontally and displayed directly above, the visual frustum will be tilted and the 3D content outside the display panel will be invisible, the large oblique viewing angle will also lead to serious aberrations. In this paper, we demonstrate what we believe to be a new vertical spliced light field cave display system with an extended depth content. A separate optimization of different compound lens array attenuates the aberration from different oblique viewing angles, and a local heating fitting method is implemented to ensure the accuracy of fabrication process. The image coding method and the correction of the multiple viewpoints realize the correct construction of spliced voxels. In the experiment, a high-definition and precisely spliced 3D city terrain scene is demonstrated on the prototype with a correct oblique perspective in 100-degree horizontal viewing range. We envision that our research will provide more inspiration for future immersive large-scale glass-free virtual reality display technologies.

4.
Food Res Int ; 184: 114274, 2024 May.
Article in English | MEDLINE | ID: mdl-38609251

ABSTRACT

Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.


Subject(s)
Oryza , Anthocyanins , Albumins , Sodium Chloride , Sodium Chloride, Dietary , Edible Grain , Ions
5.
J Sci Food Agric ; 104(7): 4371-4382, 2024 May.
Article in English | MEDLINE | ID: mdl-38459765

ABSTRACT

BACKGROUND: Whole-grain rice noodles are a kind of healthy food with rich nutritional value, and their product quality has a notable impact on consumer acceptability. The quality evaluation model is of great significance to the optimization of product quality. However, there are few methods that can establish a product quality prediction model with multiple preparation conditions as inputs and various quality evaluation indexes as outputs. In this study, an artificial neural network (ANN) model based on a backpropagation (BP) algorithm was used to predict the comprehensive quality changes of whole-grain rice noodles under different preparation conditions, which provided a new way to improve the quality of extrusion rice products. RESULTS: The results showed that the BP-ANN using the Levenberg-Marquardt algorithm and the optimal topology (4-11-8) gave the best performance. The correlation coefficients (R2) for the training, validation, testing, and global data sets of the BP neural network were 0.927, 0.873, 0.817, and 0.903, respectively. In the validation test, the percentage error in the quality prediction of whole-grain rice noodles was within 10%, indicating that the BP-ANN could accurately predict the quality of whole-grain rice noodles prepared under different conditions. CONCLUSION: This study showed that the quality prediction model of whole-grain rice noodles based on the BP-ANN algorithm was effective, and suitable for predicting the quality of whole-grain rice noodles prepared under different conditions. © 2024 Society of Chemical Industry.


Subject(s)
Oryza , Neural Networks, Computer , Algorithms , Whole Grains , Nutritive Value
6.
Int J Biol Macromol ; 264(Pt 1): 130561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431011

ABSTRACT

Beta-glucans possess the ability of retarding starch retrogradation. However, ß-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of ß-glucans related to the feature still remains unclear. In the study, the ß-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each ß-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two ß-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of ß-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity ß-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.


Subject(s)
Starch , beta-Glucans , Starch/chemistry , beta-Glucans/chemistry , Flour , Triticum/chemistry , Viscosity
7.
Int J Biol Macromol ; 262(Pt 1): 129992, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331070

ABSTRACT

Ionic strength condition is a crucial parameter for food processing, but it remains unclear how ionic strength alters the structure and digestibility of binary complexes containing starch and protein/protein hydrolysates. Here, the binary complex with varied ionic strength (0-0.40 M) was built by native corn starch (NS) and soy protein isolate (SPI)/hydrolysates (SPIH) through NaCl. The inclusion of SPI and SPIH allowed a compact network structure, especially the SPIH with reduced molecule size, which enriched the resistant starch (RS) of NS-SPIH. Particularly, the higher ionic strength caused the larger nonperiodic structures and induced loosener network structures, largely increasing the possibility of amylase for starch digestion and resulting in a decreased RS content from 19.07 % to 15.52 %. In other words, the SPIH hindered starch digestion while increasing ionic strength had the opposite effect, which should be considered in staple food production.


Subject(s)
Resistant Starch , Starch , Starch/chemistry , Resistant Starch/pharmacology , Protein Hydrolysates/pharmacology , Amylases , Osmolar Concentration , Digestion
8.
Int J Biol Macromol ; 261(Pt 2): 129900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316329

ABSTRACT

The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano­selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.


Subject(s)
Chitosan , Malus , Mercury , Selenium , Water Pollutants, Chemical , Humans , Fruit and Vegetable Juices , Malus/chemistry , Chitosan/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration
9.
Food Res Int ; 180: 114069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395558

ABSTRACT

While brown rice (BR) has numerous nutritional properties, the consumption potential of which is seriously restricted since the poor cooking quality and undesirable flavor. Here, edible oils (pork lard and corn oil, 1-5 wt%) were incorporated during the cooking of BR following heat moisture treatment. Incorporating corn oil rather than lard significantly ameliorated the texture properties (e.g. hardness, cohesiveness, and chewiness) and sensory properties of cooked BR. Both lard- and corn oil-incorporated cooked BR showed obvious structural changes accompanied by the formation of amylose-lipid complexes during cooking. It was confirmed that the incorporation of lard and corn oil allowed a higher degree of short-range molecular order, more V-type starch crystallites, and elevated nano-structural arrangements. Additionally, a decreased hardness (from 559.04 g to 424.18 g and 385.91 g, respectively) and enriched resistant starch (RS) were also observed, the highest RS content (15.95 % and 16.32 %, respectively) was observed when 1 wt% of lard and corn oil were incorporated.


Subject(s)
Oryza , Oryza/chemistry , Corn Oil , Hot Temperature , Cooking , Starch/chemistry
10.
Food Res Int ; 179: 113942, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342517

ABSTRACT

This study aimed to compare the frying performance of palm oil (PO) and high oleic sunflower oil (HOSO) during frying aquatic products. The quality change and frying performance of HOSO and PO during frying of fish cakes were investigated. The oxidation and hydrolysis products of both oils were explored by the nuclear magnetic resonance technique. The results showed that the color deepening rate of PO was higher than that of HOSO. After 18 h of frying, the total polar compound content of PO and HOSO reached 25.67% and 27.50%, respectively. HOSO had lower degree of oxidation than PO after 24 h of continuous frying. The polyunsaturated fatty acid content in HOSO and PO significantly decreased. The oleic acid content in HOSO remained above 80% during the frying process. The major aldehydes in both oils were (E, E)-2,4-alkadienals and n-alkanals and glycerol diesters (DAGs) were abundant in PO. Furthermore, the addition of fish cakes had slight effect on the quality of the frying oil. Therefore, HOSO is an appropriate candidate for frying owing to its excellent frying stability and nutritional value.


Subject(s)
Cooking , Plant Oils , Animals , Sunflower Oil , Palm Oil , Cooking/methods , Magnetic Resonance Spectroscopy
11.
Nat Genet ; 56(2): 336-347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38279041

ABSTRACT

Many methods have been developed to leverage expression quantitative trait loci (eQTL) data to nominate candidate genes from genome-wide association studies. These methods, including colocalization, transcriptome-wide association studies (TWAS) and Mendelian randomization-based methods; however, all suffer from a key problem-when assessing the role of a gene in a trait using its eQTLs, nearby variants and genetic components of other genes' expression may be correlated with these eQTLs and have direct effects on the trait, acting as potential confounders. Our extensive simulations showed that existing methods fail to account for these 'genetic confounders', resulting in severe inflation of false positives. Our new method, causal-TWAS (cTWAS), borrows ideas from statistical fine-mapping and allows us to adjust all genetic confounders. cTWAS showed calibrated false discovery rates in simulations, and its application on several common traits discovered new candidate genes. In conclusion, cTWAS provides a robust statistical framework for gene discovery.


Subject(s)
Genome-Wide Association Study , Transcriptome , Humans , Transcriptome/genetics , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Quantitative Trait Loci/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease
12.
Nat Commun ; 15(1): 815, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280849

ABSTRACT

Radiative cooling is a zero-energy technology that enables subambient cooling by emitting heat into outer space (~3 K) through the atmospheric transparent windows. However, existing designs typically focus only on the main atmospheric transparent window (8-13 µm) and ignore another window (16-25 µm), under-exploiting their cooling potential. Here, we show a dual-selective radiative cooling design based on a scalable thermal emitter, which exhibits selective emission in both atmospheric transparent windows and reflection in the remaining mid-infrared and solar wavebands. As a result, the dual-selective thermal emitter exhibits an ultrahigh subambient cooling capacity (~9 °C) under strong sunlight, surpassing existing typical thermal emitters (≥3 °C cooler) and commercial counterparts (as building materials). Furthermore, the dual-selective sample also exhibits high weather resistance and color compatibility, indicating a high practicality. This work provides a scalable and practical radiative cooling design for sustainable thermal management.

13.
Int J Biol Macromol ; 258(Pt 2): 128976, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145694

ABSTRACT

Staple foods with starch and protein components are usually consumed after thermal processing. To date, how including protein hydrolysates (with varied hydrolysis degrees) tailors the structure and digestion features of starch-based matrix with thermal processing has not yet been sufficiently understood. Here, corn starch (CS), soy protein isolate (SPI), and soy protein isolate hydrolysates (SPIH) with different hydrolysis time (5-60 min) were used to prepare starch-based binary matrices. With the addition of SPI or SPIH during thermal processing, the resultant binary systems exhibited higher thermal stability (breakdown visibility was increased by 1.9-10.8 times), denser networks, and fewer short-range orders (R995/1022 was decreased by up to 15.3 %). These structural changes allowed an inhibited starch digestion within the binary system, especially with increased SPI or SPIH content. Compared with CS, the content of resistant starch (RS) for CS-SPI binary complex (10:3 w/w) increased from 9.89 % to 16.69 %. Compared to SPI, SPIH inclusion displayed a stronger inhibitory effect on starch digestion since the reduced molecule size of SPIH probably enhanced its interplays with starch or amylase. For instance, the 10:3 w/w starch-SPIH 60 binary matrix possessed the highest RS content (19.07 %).


Subject(s)
Protein Hydrolysates , Starch , Starch/chemistry , Protein Hydrolysates/chemistry , Soybean Proteins/chemistry , Hydrolysis , Digestion
14.
Food Res Int ; 174(Pt 1): 113602, 2023 12.
Article in English | MEDLINE | ID: mdl-37986464

ABSTRACT

Controlling the digestion features of starch-based food matrices following thermal processing plays vital roles in reducing risks of metabolic diseases such as obesity and type II diabetes. To date, it remains largely unclear how regulating the pH during thermal processing alters the microstructure and digestion features of starch-based matrix including protein hydrolysates. Considering this, corn starch (CS) and soybean protein isolate (SPI) (or its hydrolysates (SPIH)) were used to prepare thermally-processed CS-SPI and CS-SPIH binary matrices under different pH values (3 to 9), followed by inspection of changes in the structures and digestibility using combined methods. It was found that including SPI (especially SPIH) caused structural changes of those binary systems, such as reduced network sizes, increased V-crystals and reduced nanoscale structures, which could allow more resistant starch (RS). This phenomenon was especially true when including SPIH with regulated pH value. For instance, SPIH inclusion at pH 5 caused the highest RS content (about 20.30%), presumably linked to the reduced molecule size of SPIH with strengthened aggregation at pH 5. In contrast, the acidic (pH 3) and alkaline (pH 9) conditions allowed reduced short-range orders and tailored porous networks and thus less RS (ca. 17.46% at pH 3 and 16.74% at pH 9).


Subject(s)
Diabetes Mellitus, Type 2 , Starch , Humans , Starch/chemistry , Protein Hydrolysates/chemistry , Resistant Starch , Soybean Proteins/chemistry , Hydrogen-Ion Concentration
15.
Food Chem X ; 19: 100869, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780319

ABSTRACT

Here, we investigated the effects of frying process on the formation of advanced glycation end products (AGEs) in shrimps using Penaeus vannamei as the raw material. The results showed that the oil, malondialdehyde, fluorescent AGEs, carboxymethyl lysine (CML), methylglyoxal hydroimidazolone (MG-H1) and the outer layer carboxyethyl lysine (CEL) content was higher in the fried shrimps than that in the raw unfried shrimps. The outer layer CML, CEL and inner CEL, MG-H1 values all reached the maximum after the first batch of frying (22.43 mg/kg, 304.24 mg/kg, 83.76 mg/kg, and 169.42 mg/kg respectively). However, fluorescent AGEs and MG-H1 of the outer layer reached the maximum after the fifth and fourth batches of frying (1230.0 AU/g and 341.63 mg/kg). Malondialdehyde, fluorescent AGEs, CML, MG-H1, and CEL concentration in the fried shrimps firstly increased and then decreased to stabilization with more frying batches, with higher content in the outer layer of fried shrimps.

16.
Opt Express ; 31(20): 32273-32286, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859034

ABSTRACT

Tabletop light field displays are compelling display technologies that offer stereoscopic vision and can present annular viewpoint distributions to multiple viewers around the display device. When employing the lens array to realize the of integral imaging tabletop light field display, there is a critical trade-off between the increase of the angular resolution and the spatial resolution. Moreover, as the viewers are around the device, the central viewing range of the reconstructed 3D images are wasteful. In this paper, we explore what we believe to be a new method for realizing tabletop flat-panel light field displays to improve the efficiency of the pixel utilization and the angular resolution of the tabletop 3D display. A 360-degree directional micro prism array is newly designed to refract the collimated light rays to different viewing positions and form viewpoints, then a uniform 360-degree annular viewpoint distribution can be accurately formed. In the experiment, a micro prism array sample is fabricated to verify the performance of the proposed tabletop flat-panel light field display system. One hundred viewpoints are uniformly distributed in the 360-degree viewing area, providing a full-color, smooth parallax 3D scene.

17.
Food Chem ; 426: 136540, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37315419

ABSTRACT

High-fat diet is a risk factor for many chronic diseases, whose symptoms are probably regulated by ingesting food ingredients such as resistant starch. For cooked rice stored in cold-chain, the starch component can retrograde to generate ordered structures (helices and crystallites) and become resistant. However, the role of retrograded starch in managing hyperlipidemia symptoms is insufficiently understood. Here, compared to the normal high-fat diet, ingesting retrograded starch reduced the triglyceride and low-density lipoprotein cholesterol levels of high-fat diet mice by 17.69% and 41.33%, respectively. This relieved hyperlipidemia could be linked to the changes in intestinal bacteria. Retrograded starch intervention increased the relative abundance of Bacteroides (2.30 times higher), which produces propionic acid (increased by 8.26%). Meanwhile, Bacteroides were positively correlated with butyric acid (increased by 98.4%) with strong anti-inflammatory functions. Hence, retrograded starch intervention may regulate the body's health by altering intestinal bacteria.


Subject(s)
Hyperlipidemias , Oryza , Mice , Animals , Starch/chemistry , Diet, High-Fat/adverse effects , Oryza/chemistry , Hyperlipidemias/etiology , Hyperlipidemias/genetics , Butyric Acid , Bacteria/genetics
18.
Carbohydr Polym ; 311: 120767, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028860

ABSTRACT

Phase separation is one of the primary quality control issues for plant-based beverages during storage. This study applied the in-situ-produced dextran (DX) from Leuconostoc citreum DSM 5577 to solve this problem. Rice flour milled from broken rice was used as the raw material and Ln. citreum DSM 5577 as the starter to prepare rice-protein yogurt (RPY) under different processing conditions. The microbial growth, acidification, viscosity change, and DX content were first analyzed. Then, the proteolysis of rice protein was evaluated, and the role of the in-situ-synthesized DX in viscosity improvement was explored. Finally, the in-situ-synthesized DXs in RPYs under different processing conditions were purified and characterized. The in-situ-produced DX caused a viscosity increase up to 1.84 Pa s in RPY and played a major role in this improvement by forming a new network with high water-binding capacity. The processing conditions affected the content and the molecular features of DXs, with a DX content up to 9.45 mg/100 mg. A low-branched DX (5.79 %) with a high aggregating ability possessed a stronger thickening ability in RPY. This study may guide the application of the in-situ-synthesized DX in plant protein foods and may promote the utilization of broken rice in the food industry.


Subject(s)
Oryza , Oryza/metabolism , Dextrans/metabolism , Viscosity , Yogurt , Food Industry
19.
Food Res Int ; 165: 112570, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36869552

ABSTRACT

The application of pea flour (PF) was restricted by the resulting non-satisfying texture of food with a high addition level of PF. Four lactic acid bacteria (LAB) strains with the ability to synthesize dextran (DX) were used to ferment PF in order to modify the texture of PF pastes, screen out promising DX producers, and evaluate the role of the in-situ-produced DX in texture modification. The microbial growth, acidity, and DX contents of PF pastes were first analyzed. Then, the rheological and textural properties of PF pastes after fermentation were assessed. After this, the in-situ-produced DXs in PF pastes were further hydrolyzed, and the corresponding changes were studied. Finally, the protein and starch in PF pastes were hydrolyzed separately to evaluate the role of macromolecular interactions between DX and protein/starch in the texture modification of PF pastes. The four LAB strains were all dominant in PF pastes, and the in-situ-produced DXs by these four strains played a critical role in the texture modification of PF pastes. Among the four DX-positive strains, Ln. pseudomesenteroides DSM 20193 and W. cibaria DSM 15878 were promising DX producers in PF-based media due to their high capacity in synthesizing DX and texture modification. The in-situ-produced DX promoted the formation of a porous network structure that was important for water-holding and texture-retaining. The DX-protein interaction contributed more to the texture modification of PF pastes than did the DX-starch interaction. This study clearly showed the role of the in-situ-produced DX and the DX-protein/starch interactions in the texture modification of PF pastes, which could further guide the utilization of in-situ-produced DXs in legume-based food and promote the exploitation of plant proteins.


Subject(s)
Flour , Lactobacillales , Dextrans , Pisum sativum , Vegetables
20.
Foods ; 12(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36981216

ABSTRACT

Germination can increase γ-aminobutyric acid (GABA) accumulation in grains, but the combined effects of germination and other external stress on rice grains have been little studied. In this investigation, enhanced accumulation of GABA and modification of its metabolic pathways in black rice grains were investigated during germination under cold stress. The combination of cold stress and germination resulted in a greater accumulation of GABA than germination alone. The treatment of cold stress at 0 °C for 1 h and germination for 72 h induced a maximum GABA content of 195.64 mg/100 g, 51.54% higher compared to the control, which was superior to any other treatment. We modified the metabolism of the GABA shunt to the orientation of GABA synthesis, in which the activity of glutamic acid decarboxylase and protease were stimulated. The total content of free amino acid indicated an upward trend as germination prolonged. The degradation of polyamines was partly promoted due to elevated diamine oxidase and polyamine oxidase activity, but the activity of amino-aldehyde dehydrogenase for the direct synthesis of GABA in the pathway was suppressed. The result implied that the GABA shunt might play a major role in enhancing GABA accumulation induced by cold stress and germination rather than the polyamines degradation pathway. This investigation provides a practical reference for GABA accumulation by germination under cold stress and a theoretical basis for the possible mechanism underlying the accelerating action.

SELECTION OF CITATIONS
SEARCH DETAIL
...